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The problem of heat transfer in the initial section of a helical duct with a steady 
flow of an anomalously viscous fluid is solved numerically. 

A standard technique for the intensification of convective heat transfer in anomalously 
viscous media is to impart a swirling motion of the flow by means of helicoid inserts. We 
do not know of any theoretical studies of heat transfer in helical flows of non-Newtonian 
media. 

in this article we solve the heat-transfer problem in the initial section of a helical 
duct formed by an internal continuous helicoid vane fitted tightly to the inside wall of the 
pipe (Fig. i) for steady laminar flow of an anomalously viscous temperature-dependent fluid 
under the condition of dissipative heat loss and Dirichlet-type boundary conditions. 

Assuming that the heat transfer along the axis of the duct by conduction is immeasurably 
small in comparison with the forced transfer, we can state the problem as follows: 

U~ (r, ~, U) Ol~ @ U z (f, ~, U) OU ( 02U l &.t 1 02tl \) E (r, ~, u) 
. . . . .  a + ----+ + , r, +C8,  0 ~ < z < ~ Z  (i) 

r O~ Oz \--~r 2 r Or r ~ 8~ 2 , pCp 

w i t h  t he  b o u n d a r y  c o n d i t i o n s  

u(r, ~, O)= Uo, u(r ,  % z)l r = u  r. (2) 

To d e t e r m i n e  the  p r o f i l e s  o f  the  a x i a l  and c i r c u m f e r e n t i a l  components  o f  t he  v e l o c i t y  
we w r i t e  the  s y s t e m  o f  e q u a t i o n s  o f  m o t i o n  and c o n t i n u i t y ,  assuming  t h a t  t he  r a d i a l  v e l o c i t y  
component  v r i s  z e r o ,  t he  c i r c u m f e r e n t i a l  component  has  the  form v , = m ( r ,  ~)r, t he  t a n g e n t i a l  
p r e s s u r e  g r a d i e n t  i s  i n s i g n i f i c a n t ,  and the  f o r c e  o f  g r a v i t y  i s  s m a l l  i n  c o m p a r i s o n  w i t h  the  
c e n t r i f u g a l  f o r c e :  

Op __ o~2r ' (3) 
Or 

8p 4- (o . . . .  V + (4) 
Oz ' &p Or ~.~ Or / -~ r 2 Ocp &p j r Or 

with the boundary conditions 

vz(r, ~)lr=O, %(r, ~)lr= O. (5) 
We seek a solution of the system (3)-(5) in a cylindrical coordinate system rotating 

with an angular velocity m about the z axis and moving translationally along the x axis, 
which coincides with the axes of the pipe and the internal vane. 

Inasmuch as the angular velocity of rotation of the coordinate system depends on the 
fluid flow velocity and on the pitch of the helicoid vane, it can be written in the form 

(r, ~) = ~/S. ( 6 )  

The axial component of the velocity for the given coordinate system is v z = Vzsyst + 

Vzre!, where the velocity of the system can be expressed in the form Vzsyst = VZrel max" 
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Fig. i. Schematic view of the helical duct. 

The axial velocity component as the function Vzrel = f(r, ~) is determined from the ex- 
pression 

OVZrel dr @ Ovz'rel d% (7) 
dVzrel - -  Or O~ 

Assuming that the components of the tangential stress are equal to 

% = ~  0Vzre I _ Ap Oq~, ~r  Oriel = Ap O~ (8) 
Or 2 Or O~ 2 O~ 

and then substituting this expression into the total differential (7), we represent the 
distribution of the axial component of the velocity over the cross section of the helical 
duct by a curvilinear integral: 

V~rel(r, ~) : s  Or + - - ~  O~ , (9) 

where the fluidity @ is expressed by the relation 

\ O r /  -~ " (lO) 

For the specific rheological law we use the relation between the fluidity and the shear 

stress: 

�9 = r + k~). ( i i )  

Expression (9) describes the distribution of the axial velocity component in the relative 
coordinate system for a duct whose cross-sectional configuration corresponds to a known solu- 
tion of the Dirichlet problem for $ in the Poisson equation [I]. For a duct with the given 
cross-sectional configuration the function ~ is written [2] 

32 ~ 1 sin mz~q~ sin n~r (12) 

where a -- 
r~ (R1 + R~) 

360 
r b = R2--  R1- 

Having determined the velocity and stress components, we can write the mechanical 
energy dissipation function for the given problem: 

OVz O~z (i 3 ) E (r, ~,) = ~ ,  ~ + ~ - -  
Oq~ 

To close the system of analytical equations we use the Arrhenius formula for the viscosity 

as a function of the temperature [3]: 

(Do= A exp ( _ _ _ ~ T )  . (14) 

To solve Eq. (i) subject to the boundary conditions (2) we use the same notation as in 

[4]: 
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Ou u) Ou =aLuq- E(2' u) 
~ ,  (x, ~ ) - ~ -  + v~(x, az pc~-----G" (15)  

2 
Ozu 

(16) 
u (X, z)lr = ur, u (Z, O) = Uo. 

To facilitate the numerical solution we make a transformation of coordinates, shifting the 
origin so that the domain ~ will be situated in the first quadrant of the Cartesian coordi- 
nate system. 

The following conditions are satisfied in the investigated domain G: i) The intersec- 
tion of G with any straight line parallel to one of the coordinate axes consists of a finite 
number of intervals; 2) it is possible to construct in G a connected net eh with spacing 
h~, ~ = i, 2. 

The set ~h of interior nodes of the net consists of the points ~=(%a, %~)~G of inter- 
section of the lines X~ = i~hfl, ig = 0, • • ..., ~ = I, 2, and the set Yh of boundary 
nodes consists of the points of intersection of the lines C8, ~ = i, 2, passing through all 
interior nodes %~(% with the boundary r. For the difference approximation of the operator 
LB at the node X we use a three-point stencil consisting of the points X(-~), X, X (+~). 

The difference opera=or A~ ~ LB has the form 

02u 1 f tj(+If3 ) y(--1~ ) 
x~ h;  by+ h?- 

, h ; ~ - - O , 5 ( a ? + +  A~*-). 

In the interval 0 -~ z ~ Z we introduce the net ~, = {zj = jT*, j = O, I ..... jo} with 
spacing T* = z/jo. In the layer (zJ, zJ +~) we solve in succession the equations 

with the boundary condition 

OU(1) 02U(1) v~ Ov~) +vx,  -- a - - - - - + F  
Oz OX~ OX~ 

and the equation 

(17)  

(18) 

(19) 

(20)  

0v(2) a~o(s) 
- - a - - + F  v~ Oz OX 2 

w i t h  t h e  b o u n d a r y  c o n d i t i o n  v(2)  (X, u J + : / 2 )  = v ( ~ ) ( X ,  uJ+~/a)  " We s e t  

v(~) (Z, O)= uo, F = -- ,E v~('Z, ui)=v~(X, u i-I) , v~(z, u~ Uo), 
2oCpG 

v~, (x, d ) =  v.~, (x, E-~), vx, (x, u~ = vx, (X, Uo). 

We replace (19) and (20) by the double-layer purely implicit scheme 

(21) 

(22) 

Vz tj/§ __yi - - - § vx,Axg1+:/z = ~A1F/+1/2 ~- F, 
T* 

_ 9i+1 _ 9 i + : / 2  
v~ = aA2y i+: + ~. 

We a u g m e n t  (23)  and  (24)  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

tjq-[~/2 = !At, ~E'~A~, [:]()~, O) :~- U O. 

For yj+fl/a we obtain the boundary-value problem 

Ai yiif~12--C~ui+'~/~4-B. " /+~ '2=- -F7+~/2  yi+~/ 'e=u r for ZCYA~, ~ = 1  2, 
J3 i ~ _  1 ~Doi~  ~ l ~ i [ 3 q _  1 if3 ' 

(23) 

(24) 

(25) 

(26)  
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which is solved by a double-sweep procedure and in which only the variable subscripts are 
indicated. 

To solve the problem we have written a pL/l program for Unified Series ("ES") computers 
[unified system used in COMECON nations]. The set mh is represented by a p x n rectangular 
matrix, where p = max(il + I), n = max(J2 + i). 

Introducing the set H~ = {h~8 , Ni~ , Nis} , i~ = i, 2, 3, ..., ~ = I, 2, we can specify 
the initial and final values of the subscripts of the sweep coefficients in the difference 
equation (26). 

For the solution of the problem we form the matrices of like orders p, n, M~, M2, Ms, DUE, 

Duy, Vz, VX~ , ~, whose elements are, respectively, the values of the functions yJ, yj+i/2 

yj~1, 3~/~XI, ~/~X2, Vz, Vx; ~. 

At the start of the calculations we assign the elements of M~ the values Y(X, 0) = uo. 
In calculating the elements of M2 the sweep process is in the direction of X~, and for M3 

it is in the direction of X2, in which case the set H B is used. If the difference between 
the values of the elements of the matrices M: and M3 is greater than a specified E, the ele- 
ments of M~ are assigned the values of the elements of M3, and the elements of M2 are com- 
puted, etc. If this difference is smaller than the specified r the computation is termi- 
nated. 

As an example we calculate the velocity and temperature field for the flow of a model 
anomalously viscous fluid (8.5% aqueous solution of sodium carboxymethyl cellulose Na-CMC) 
with the following parameters: k = 9.165; m = 0.681; A = 0.9; B = 35 kJ/mole. 

The rheological parameters of the model fluid are determined from the results of visco- 
metric measurements performed as part of an experimental study of heat transfer in helical 
ducts. The calculations are carried out for a duct with R~ = 0.021 m, R2 = 0.036 m, S = 
0.080 m. 

Figure 2 shows the dimensionless profiles of the axial and circumferential velocity 
components in the annular cross section at r = (R~ + R2)/2 and in the radial cross section 
A--A. Inasmuch as the calculations are carried out with regard for the temperature dependence 
of the viscosity and dissipative heat release, the velocity profiles are deformed along the 
length of the duct and are shown in Fig. 2 for several values of Z = z/Z, where Z is the 
length of the duct. 

Two flow regimes are possible in the nonisothermal case: constant volumetric flow rate 
(Q = const) and constant axial pressure gradient (Ap = const). We are investigating the 
second regime, which in the practical situation of a fluid with temperature-dependent param- 
eters is realized for a constant mass flow of fluid. The average flow velocity needed for 
the graphs is determined in each investigated z-cross section in terms of the volumetric 

flow rate through the cross section 

Q = --~p j.l ~D.~2drd~ (27) 

according to cubature formulas, within prescribed error limits, by means of the useful cross 

section 

F =  S R ~ +  - -  R ~ + \  , (28) 

which is defined a s  in [5]. 

Figure 3 shows the variation of the dimensionless temperature 0 = (u -- uF)/(uo -- u F) 
in the same cross sections of the helical duct for the same values of z. 

FJ]ure 4 shows the dynamics of the variation of the local heat-transfer coefficient 

~* along the length of the duct. 

A comparison of the calculated and experimental values (according to the results of 
tests with 8.5% Na-CMC) of the average heat-transfer coefficients shows that the maximum 
discrepancy between them is 24% and is attributable to the accuracy of description of the 
model-fluid flow curves by the rheological equations (Ii) and (14), the assumption of m = 
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Fig. 2. Calculated profiles of the axial component v z 
(solid curves) and circumferential component v ~ (dashed 
curves) in a flow of 2.5% Na-CMC. a) In the annular 
cross section at r = (R: + R2)/2; b) in the radical 
cross section A--A; !) z = 0.0016; 2) 0.32; 3) 0.64; 4) 
1.0; Ap = I00 N/m 3. 
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Fig. 4 

Fig. 3. Calculated profiles of the dimensionless tem- 
perature 0 in an annular cross section (solid curves) 
and in the radial cross section A--A (dashed curves). 
(Same nomenclature as Fig. 2.) 

Fig. 4. Dynamics of the variation of the local heat- 
transfer coefficient ~*, W/m2K, along the length of the 
helical duct (Ap = i00 N/m3). 

n = 5 in (12), and the assumption that a Dirichlet-type boundary conditions is proper on the 
surface of the edge of the helicoid vane. 

NOTATION 

r,  ~,z, running coordinates; u, instantaneous temperature; uo, initial temperature of the 
fluid; u F, duct wall temperature; vz, v~ , axial and circumferential components of the flow 
velocity; a, p, Cp, thermal diffusivity, density, and heat capacity of the fluid; E, mech- 
anical energy dissipation function; 2, contour of the duct; ~, angular velocity of rotation~ 
p, pressure; ~, effective viscosity of the fluid; S, pitch of the internal helicoid vane; 
Vzsyst, axial velocity of the coordinate system; VZrel , axial component of the velocity in 

a moving coordinate system; TT~m , components of the shear stresses; Ap, pressure drop per 
unit length of the duct; ~, function characterizing the duct geometry and satisfying boun- 
dary condition~ analogous with c0(r. 9) (representing the solution of the Dirichlet problem in 
the Poisson equation); ~, fluidity; ~o, fluidity as T->O; r, shear stress; k, m, constants in 
the rheoiogical equation (ii); RI, radius of the outer surface of the central tube of the 
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helicoid vane; R~, radius of the inner surface of the outer tube; ~, central angle; A, a 
constant; B, activation energy for the flow process; R, gas constant; T, absolute tempera- 
ture; X = (X~, • point in two-dimensional Euclidean space; hB, spacing of computing net 
mh; mh, set of interior nodes; Yh, set of boundary nodes; G, a domain; G, a domain with 
boundary F; L~u, Laplace operator; CR, straight line through an interior node; A, difference 
operator; ~*,~z-spacing of net; h~, distance from irregular node X to boundary node X(-:B) 
or X(+:~); h~, distance from nodes ~h,~ next to the boundary to boundary nodes hh,B; N~B, 
indices of left boundary nodes in a matrix in the direct$on of XB; NiB, indices of right- 
boundary nodes; AiB , Bi~, Ci~, sweep coefficients in difference equation; Q, volumetric flow 
rate; 0, dimensionless temperature; ~, average flow velocity; Z, duct length; l, length of 
the initial thermal section; F, useful cross section of duct; VXI, ~z, a, F, discrete values 
of functions. 
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TRANSIENT PROCESSES IN SHEAR FLOWS OF A VISCOELASTIC FLUID. 

III. ELASTIC RECOVERY* 

Z. P. Shul'man, S. M. Aleinikov, 
and B. M. Khusid 

UDC 532.135 

A mathematical description of the elastic recovery effect associated with visco- 
elastic shear flow is given. 

In this article we investigate the transient process associated with the shear flow of 
a viscoelastic fluid in the clearance space between coaxial cylinders (problem 3) [I] when 
the outer cylinder is rigidly fixed and the inner one set in motion by the action of a con- 
stant external torque. The applied torque acts for a period of time t*, after which it is 
removed. The detailed mathematical statement of the problem and a procedure for its numeri- 
cal solution are described in [i]. 

The external torque drives the cylinder and the fluid. As in problem 2, after several 
transits of a shear wave across the clearance space a quasisteady fluid flow regime is es- 
tablished, for which the conditions of realization are described in [2]. We now give a 
qualitative analysis of the influence of the rheological properties of the fluid on the laws 

*The problem treated in Parts I and II [i, 2] and the present article are discussed in 
application to the Bird--Carreau, Meister, and MacDonald--Bird--Carreau nonlinear models in a 
paper by Z. P. Shul'man, S. M. Aleinikov, and B. M. Khusid, Rheodynamics and Heat Transfer 
in Unsteady Shear Flows of Nonlinear Hereditary Media, Preprint No. 6 of the Institute of 
Heat and Mass Transfer of the Academy of Sciences of the Belorussian SSR [in Russian], ITMO 
AN BSSR, Minsk (1982). 
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